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IF A FINITE EXTENSION OF A BERNOULLI 
SHIFT HAS NO FINITE ROTATION FACTORS, 

IT IS BERNOULLI 

BY 

DANIEL J. RUDOLPH' 

ABSTRACT 

We show here that a finite extension of a Bernoulli shift either has a finite 
rotation factor or is Bernoulli. The proof lifts to this more general case the 
"nesting" technique we used previously to prove this for two point extensions. 

In an earlier paper,  If a two-point extension of a Bernoulli shift has an ergodic 

square, then it is Bernoulli, we developed a technique for investigating the 

behavior  of two point extensions of a v.w.b, distribution. We here extend that 

result to finite extensions. Our  attack is essentially identical to the two-point 

case. As the arguments  get a good deal more involved, it was convenient  to 

separate  off, in the two-point case, those results concerning Bernoulli shifts 

which are completely general, and to provide a simpler case to familiarize both 

the reader and the author with the technique. The  reader is expected to be 

familiar with this earlier argument,  as it will be quoted from and applied very 

often. 

A finite extension, I", of a Bernoulli shift is a skew product of a Bernoulli 

action (T, ~ ,  tz, ~:) with the actions of S,, the symmetric group, on n-points.  It is 

defined by T(w, i) = (T(w), g,(i)) where g,, ; f I ~  S, is a measurable  map. This is 

equivalent to saying T has an invariant Bernoulli factor with n-point  fibers. 
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Here  are some simple examples. For any a E S,, if g = a, then T is not weakly 

mixing and in fact, for some k, T~ is nonergodic. On the other hand, if we define 

g,  = m when to E S, i = 1,. �9 n !, where {S,} is an independent generator  for T, 

it is easy to check that J" is mixing Markov on {S,} v {1 , . . . ,  n} and hence is 

isomorphic to a Bernoulli process. A simple lemma quickly limits us nearly to 

these. 

LEMMA 1. I f  7" is an n-point extension of a Bernoulli shift and has no periodic 

factors, then 7" is a K-autornorphism. 

PROOF. Suppose T is not K. Let S be a set in the Pinsker algebra ~r(J'). This 

S must be independent of the Bernoulli factor of T. Thus S must intersect a.e. 

n-point fiber in some constant k(s)  points. As ~r(7") is a (r-algebra, it thus must 

be atomic. Hence ~'(7") must be a periodic factor. �9 

This lemma is a simple extension of Parry's result [2]. Our work now is to 

change K in the above to Bernoulli. 

To  begin, let T be a fixed n-point extension of a Bernoulli shift. For our 

purposes, a partition P of a space Y will be a measurable function from Y to 

some finite or countably infinite space of labels. The "sets in P "  will be the 

inverse images of points in the label set. With this proviso, let P be a generating 

partition for the Bernoulli factor such that the sets on which g is constant are 

unions of sets in P. Let D be the partition of ~ •  such that 

D((to, i)) = D,  i.e. the partition into sets of constant second coordinate, and let 

P = P v D, P v D(to, i) = (P(to, i),D(to, i)). Now for any O E f l x { 1 , - . . , n } ,  if 

we know the P-names,  . . . P ( T - ' ( ( o ) ) . . . P ( d 0 . . .  P ( T ' ( t ~ ) ) . . .  , of ~, and its 

"color"  D ( T '  (d0) at one index i, the P-name explicitly forces the rest of the 

colored name. 

To each label in the range of P, the action g assigns an element of S,. This 

map, though, may not be onto all of S,. If not, extend the set of labels for P, 

called 71, so that this assignment is onto. For/3 ~ 7/, let I-I(/3) be the element in S, 

assigned to/3. Now for any partition B with label space 77, we can define II(/3); 

Y ~  S. by I I (B) (y )  = II(B(y)) .  For any partition B with label space 7/ and any 

C with label space F = {D1, . . . ,  D,} we can define a partition I I (B) (C)  with 

label space F by II(B)(C)(y)=Dn~B~y)ct) where C ( y ) =  Dr. Notice D,§ 

II(P,)(D,). 

To any sequence of partitions VT=IB, where each B, is labeled by 7/, a 

"coloring" will be a sequence of partitions VT.IC,, C, labeled by F where 
m 

C,. j=II(B,)(C,) .  Such a sequence V~.~B, v C~ will be called a "colored 

sequence" of partitions. Thus VT.~ T' (/5) is a colored sequence of partitions. 
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From now on, partitions named with B ' s  or P ' s  will have label space 17, and 

C's  or D ' s  will have label space F. 
We recall now a number of notions from [3]. A "copy"  of V~'.1B, is a 

sequence of partitions, V 7-~/3, of [0, 1] with dist (V ~".~ B,) = dist (V 7-~/~,). A 
r a  m 

"joining" of V~.l B, and Vii  1B'~ is a copy of each, V7'-I/3, v / ~ .  We abbreviate 

(llm)Er.,a(B,,B,) as d= (V~.tB,, " - '  ' V j.~B~). We say two colored sequences, 

VT.~ B, v C~ and V ~=~ B'~ v C'~ are "(e, a)-close" if there exists a joining so that 

i = l  i - I  

and 

dm (i.~ t~j,,.,~ C'l) < a. 

'~ V, . l  B, v C', are "(e, a)-rigidly apart" if The opposite notion is Vi.~ B, v C~ and = ' 

for any joining with 

we must have 

dm ( ~  t~,, ~ C'i) > 1 -  a. , - 1  , i l 

"1 V~-IB.v  C~ were In the two-point case we knew that V~.~B~ v C, and " ' ' 
(e, a)-rigidly apart iff V7-1 B, v Ci and V~'.l B~ v C~ were (e, a)-rigidly close. In 

the general n-point extension we have no notion to replace [ by. Hence we must 

work with both closeness and apartness. 
As before, our argument hinges on the notion of nesting. We will use it in a 

number of contexts, so we will develop it here in a degree of generality. First, a 

bit more structure. The "blocking" of a joining VT-~/~, v/~'~ will be {Fk, {S(k, g)} 

where {Fk} is a partition of [0,1] into subsets, first by what subsequence 

of indices the two names of a point differ, i.e. for to EFk, /~(to)#/~'~(to) 

precisely when i = i ( 1 ,  k), i(2, k ) , . . . ,  second we refine this by 

V~/~,t.k) v C,t.k)v/3',ctk~ v (~',,.~), and third we partition by what element of Sn, 

I I (B1/F~ ) o n(B:IF~ ) . . . . .  n(a.~.,,IF~ ) = g (k, 1) 

and 

I I (B ',/F~ ) o I-I(B ~/F~) . . . . .  H(I~ i~.,/F~ ) = g'(k, !) 
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are. Finally S(k ,g )  is, for each k, the partition into at most n! sets of {1--- m} 

where 

S(k,g)={i(k,l)+ t Ig(k,l)-lg(k,l)=g, l <-t< i(k,l + l)-i(k,l)}. 

A "monochrome" coloring, V 7-~ (7,, for V 7-, B, is one for which C, is V 7-, B, 

measurable, i.e. any uncolored name has exactly one color sequence. 

Now we are ready to define what it means to nest. Let V72, B~ v C~j and 

V,.,B,.jv" ' C'~.j be two sequences of distributions where mj ~oo and 
J 

- ( - f  - B~j, V B~.j O. 
dm~ i i I--I 

We say these two "nest to g with rate A, 8( )" if the following holds. For any 

e > 0, there is a ,/(e). Take for any j > J (e )  a joining 

mt _ 

V B~j v ~ j  v ~ :,1 v #:.j 
| - ]  

with 

(v' " ) d,,,, ~ j ,  v ~',., < a(~). 
\ t - I  1 - 1  

Let {Fk,{S(k,g)}} be its blocking. Let So(k)={i I C~j/Fk = C',.j/F~}. This is 

precisely the places where the colors agree and is a union of S(k, g)'s. Finally, 

(i) for at least 1 - 3/2 of the F~, card(so(k))_- > (1 - 3/2)n or (ii) for at least A in 

measure of the F~ with card(so(k))< (1 - e/2)n, for at least A in density of the 

S(k, g)~. S~ for at least A in measure of the atoms E of 

v ~ j  v C'~, v ~',,, v Ct, ,  
IES(k,I) 

V B ~ v C ~ j l F ~ n E  and V /~ i . jvC~t /F~nE 
i~S(k,g) t~$(k,I) 

are (e, 1 - A )-close. 

LEMMA 2. Given any V',.~ B~I v C, j and V'~2~ B~.j v C',.j which nest at rate A,  
a( ), then 

", ) 
lim d,., B~ v C~j V B',.j v CI.j =0 .  

Paoov. Call a joining with 
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ml m I ) 
&, v ~j, v ~;.~ < e' 

t - I  | -1 

an "~'-joining". Let 

f(J, e') = sup inf din, V C~,, V CI., �9 
j>J e '-jolninp 1 1 I--1 

Fix e '  and take e < ~5(e'), j > J(e) .  Consider an e-joining of V,~l B~j v C~ and 

V ~'.~1B~.~ v C',,j. If (i) holds we are done. Otherwise in its blocking, ignore the Fk 

with card (Se(k))>(1 - ~/2)n and the further fraction 1 - A  of the F~ about 

which nesting says nothing. Of the S(k, g)~.6e(k)  we can select one, S(k,g~). 
card (S(k, g~))> m~A I(n !)2, where nesting says we can condition on everything 

outside S (k, gk ) and improve the joining. Do so, and we conclude if f ( J ( r ) ,  e ) > 

~, then 

, (a'  ) (i) f (J(~) ,  e + e')_--< e ' +  f (J(~) ,  e ) -  f f (J(~) ,  e ) -  2~' 2-'h-~!)' (1 - ~') 

A 4  

< 3e'+f(J(e),~) (1 4n-~!)2 ) 

whenever e _-< 8(e').  Now choose e , , . . . ,  eL, where e,_, = inf (8(e~)/2, ed2). Then 

el + ' "  + et-i <= 8(e~). Iterating (i) k times, either at some step we are finished 

already as f (J(e,) ,  e, + " "  + e,)-_ < ~, or 

( f(J(e,) ,  ~, + . . .  + E ~ ) ~ 3 ( e 2 + . . .  + e~)+ f(J(el) ,  e,) 1 4n~(n!)2 

< 3 ( e 2 + . . . +  e , ) +  (1 A '  )6. 
- -  4n 2(n [)2 

For any e we can choose k so that el + �9 �9 "eL < e/5 and (1 - A ~/4n 2(n !)2)~ < e/5 

and we are done. �9 

We now begin to investigate something which, at first, may not appear that 

natural, but as we saw in [3], it is the proper context in which to handle the 

failure of nesting to occur. 

Consider, then a doubly indexed array of distributions 

,nO.t) 
v B, Cj, t), q , t ) ~ ( z §  ", 

i - I  

where for fixed t, m(],t)--,oo and 
I 
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( .o.,, )) 
d,,,o.,, B,( / , t ) ,  v T ' (P)  = O. 

\ i - I  i l l  

To each element in this array assign n different monochrome colorings 

VT'~")CI(j, t), l =  1 , - . . , n ,  so that for l~  l', 

d(C',(i, t) ,  C~'(/, t ) )  = 1, 

i.e. no two ever agree anywhere. We cannot have more than n such. Call this a 

"disjointly colored array," and the n colorings a "disjoint coloring." 

Suppose we have two disjointly colored arrays with m (/', t) = m'(j, t), and a 

collection L of ordered pairs ( l , / ' )•  {1,. .- ,  n} 2, so that when (l, l ' )E  L, 

m(j , t )  m( j , t )  

V Bi ( j , t )  v C I ( j , t )  and V B ' i ( j , t ) vC ' , r ( j , t )  
i - I  i - I  

are (e (t), 1/t)-rigidly apart, for some e (t) > 0. What interests us here is maximiz- 

ing the size of L. Certainly a maximum exists, as card (L)_-< n 2, but we want to 

approach its construction systematically, and understand how it relates to 

nesting. We begin by introducing a scheme for modifying the disjointly colored 

arrays to increase the number of pairs in L. 

COROLLARY 3. L e t  

'10,0 
V B , ( j , t )  v ~1 Cl (m, t )  

i - 1  I l l  

and 

mO, O 
V B , ( j , t )  v ~/ " " ' "  C ,  ( j , t )  

i - - I  I--1 

be two disjointly colored arrays with pairs, L, of  colors ( e (t), l / t )-rigidly apart. Let  

(l, l ')f~ L. Then either 

i) for any e~ > 0 there is a T so that for t >= T and any e2 > 0 there is a J so that 

for i > L 
,,, t),t ) , . 0 , 0  

V B~(j , t )  v C [ ( j , t )  and V B '~( j , t ) vC ' , r ( j , t )  
i - 1  i - I  

are (e2, e,)-close, or 

ii) for any A > 0 there is an ~ > 0 and an infinite set T ( A  ) so that]or t E T ( A  ) 

there is an ~ (t, A ) > 0 so that for any 8 > O, there is an infinite set J (A,  t, 8 ) so that 

]:or j E J ( A ,  t, 8), there is a 8-match 

,,t ( h O 

V B i ( j , t )  v C [ ( j , t ) v B ~ ( j , t ) v C ' , r ( j , t )  
i - - I  
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so that in its blocking, [or more than (1 - A )~ of the Fk, for more than (1 - A )~ of  

the S(k, g), for more than (1 - A ) o~ the atoms E in 
V,~s,~k.,~B,(j,t)v CI(j, t) v/~, (j, t)  v C'i'r(j, t), 

V B~(j,t) vOl.j(j,t)/EtqFk and V B[ivC///(j,t)lFknE 
i~S(k,g) i~S(k,$) 

are (f(t ,  A ), A )-rigidly apart. 

PROOF. If i) is false, then for  any A > 0, there  is an ~ > 0 and infinite set 

T ( A )  so that for  t E T ( A  ), there  is no 8( ) for  which the sequence  in j nests to 

with rate A, 8( ). Hence  for some d(t, A ), no mat te r  how small 8 is chosen,  it 

must fair as a choice for  8 ( f ( t , A ) ) ,  for  infinitely many ], in the manne r  ii) 

describes. �9 

In case ii), we have in 

V B, (j, t) U 0~,~, t ) lE n Fk and V /~'., v O/l;(j, t ) lE n Fk 
i~S(k,$) i~$(k,S) 

two distributions to try to use as new terms in a set of pairs rigidly apart.  We  

have three  difficulties to handle.  These  are not colored distributions.  We may 

lose the o ther  rigidly apart  pairs. These  must be chosen to form disjointly 

colored arrays. 

To  handle  the first problem,  when we reindex these two in consecut ive  order ,  

we want to modify the uncolored  names  when necessary so that the colored 

sequences  are colorings for it. Hence ,  let S (k, g)  = {j (1), j (2), �9 �9 j (card S (k, g ))} 

and for  j ( l ) #  i(k, l ') for  any 1', let 

/~, (k, g, E )  = Bjct)/E n Fk = B'tt~/E n Fk. 

I f / ' ( / )  = i(k, t') then j ( l  + 1) = i(k, l") + 1 for  some l", and for  any to E E ~ Fk, 

[ I t l ~ t ' ~  o .  o - ( ' )  ~t., ,(k.,', " "  I I ( B / ( k , , - ) )  

- (~) 
= (H(B, , . ,_ , , . ,  . . . . .  II(/~ ~'~,.,_,))-' o g (k, l' - 1) -1 g (k, l") 

= I I ( l / t l~ , {  ' -  l)+ l) . . . . .  1-I (Bt l : , l , )_  ,))-' o g '(k, 1' - 1)-' g ' (k,  1"). 

Let  /~, (k, g, E )  be some part i t ion so that II(B, (k, g, E ) )  is this one. Now let 

C, (k, g, E )  v C',(k, g, E )  = ~ , ,  v C;u,IE N Fk. 

It follows that both of these are m o n o c h r o m e  colorings for  V ~,,~tst~.s~/~, (k, g, E ) .  

Call this the "s tandard  modif ica t ion"  of these two condit ional  distributions. 

More  generally,  whenever  we consider  the distribution across some subset of 
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indices, conditioned on a single name across the remaining indices, we can 

modify the uncolored conditional distribution only at those indices i where i + 1 

is not in the subset, so that, when collapsed down, we get a colored distribution. 

Our next lemma settles the second problem. 

LEMMA 4. 

SO that 
I/ /or two dis/ointly colored arrays, we have an e (t) > O, and (l, l') 

m ( j , t )  m( i , t  ) 

V B , ( j , t ) v C I ( j , t )  and V B:(j , t)  vC:"( j , t )  
| - 1  i--I  

are (e ( t ), l l t  )-rigidly apart, then for any 8 < e (t)/2 and any 8-match of these two, 
/or all but ~/~-t o/ the Fk, for all but g/ f f t  o/ the S(k ,g) ,  for all but g / f f t  o.f the 
atoms E in 

--#1' �9 
V Bti (j, t) v C{~(j, t) v B",.s(j , t) v C, .j(j, t), 

i E S ( k , l l )  

v g , q , t ) v - '  " - '"" c tit j, t)lFk n E and V B" (i, t) v C, ,j(j, t)IFk n E 
i E $ ( k , I )  IES(k. I )  

are still (e (t)/2, n2(n ! )  2 g/~)-rigidly apart. 

PRoof. Otherwise, starting at this 8-match, we can modify on an S(k ,g )  
which contains ~/ f f tm(j ,  t)/n2(n!) 2 of the indices, in +X~/]~ of the Fk, on 4X~/~t of 

the atoms E, and improve by +X~/]-~, producing e (t)/2 new errors in the uncolored 

partitions. This is an improvement by at least 1St on colored partitions with 

fewer than e(t) errors on uncolored, which is a conflict. �9 

Using this lemma in case ii) of Corollary 3, we can take any A, choose t so 

large that n ~ ~ ] ~  < (1 - A )A/4n2(n')  2, and then for any 8, we can get arbitrarily 

large j, and a 8-match, so that we can pick k, g and E where 

v B,q,t)vClq, t) lF~nE and v B/q,t)vO/"q,t) lF~nE 
i E $ ( k , g )  iE$(k ,g)  

w _ 

are (~ (t, A ), A )-rigidly apart, and if (l, ! ') E L, then 

V B , ( j , t ) v 6 " [ ( j , t ) l F ~ n E  and V B:( j , t ) v~ , '~ ' ( j , t ) /F~nE 
iE$(k ,g)  i E S ( k , g )  

are (e(t)/2, n2(n!)2~-~)-rigidly apart. Fix t and A. Set 

[ ++ ( t '= in/ ,n2"(~!)2]j and f ( t ' ) = i n f  ~(t ,A) ,  . 
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Now for any (I, l ') = L O {(l, l')}, these two colorings of the standard modifica- 

tions are (~(t'), 1/t')-rigidly apart, no matter how small 8 is. This only leaves the 

problem of making the uncolored sequences converge in j. Noticing that 8 can 

be made arbitrarily small, and F~, S ( k , g )  and E still chosen from sets of size 

(1 - A )A/4n2(n  !)2, lemmas 2 and 4 of [3] tell us that we can make our choices, 

for fixed t and A, hence t', with the uncolored distributions as close as we like in 
:.rd(S(~.~>) T ' ~ P ~  Thus we get the following. d to Vi-~ - ~-j. 

LEMMA 5. In case ii) of Corollary 3, we can construct a new array, disjointly 

colored in two ways, a new g(t) >0  so that the set of pairs, I~, (g(t), l/t)-rigidly 
apart is one larger. �9 

This construction gave us a single uncolored array. We would also like to 

know that we had only a single disjoint coloring, instead of two, from which our 

pairs are chosen. Notice that when a single distribution is disjointly colored in 

two different ways, the space breaks into at most (n !)2 sets on each of which one 

disjoint coloring is the same as the other, reindexed. Our next lemma shows that 

rigidity is preserved if we condition on such a subset. 

LEMMA 6. I f  VT'.~B, v C, and VT.~B, v C'~ are two colored distributions 

(e, A )-rigidly apart, then for any partition {Fk }, for all but X /A  of the Fk, 

~/ B, v C~/Fk and ~t B, v C;/Fk 
i - I  i - I  

are still (e, X/A)-rigidly apart. 

PROOF. Same as Lemma 5. �9 

Again applying lemma 2 of [3], we get a stronger version of Lemma 5. 

COROLLARY 7. In case ii) of Corollary 3, we can construct a single dis]ointly 
colored array, and set of  pairs I~ one larger than L so that any pair of  colorings in I~,, 
from this single array, are (~(t), 1/t)-rigidly apart. �9 

With this construction in hand, we can build a single disjointly colored array, a 

function e ( t ) >  0, and a set of pairs L, whose size is maximal, (e(t),  l/t)-rigidly 

apart, and for any (l, l ' ) ~  L, for any el > 0  if t is large enough, for any e2,if j is 

large enough 

toO, t) m(2.0 

V B,( j , t )  vC' , ( j , t )  and V B , ( j , t ) v C l ' ( j , t )  
i --1 i ~ l  

are (e2, el)-ciose. 

Call such a "maximal arrangement." 
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THEOREM 1. If in any maximal arrangement, c a r d ( L ) = 0 ,  then (T,/5) is 

1) .w.b .  

m(/) r', r  PROOF. In this case, we must have, for any sequences V,-1 t~,U) and 
too) , - w'~~ V,-I B,(j) which tend, in d, to -,=1 (P), as j - ~ ,  and any monochrome 

colorings for these, that 

_ [ too) ,No) ) 
(a) lim d , ~ ) \  ,V B, (j) v C~ (j), V B'~(j) v C'~(j) = O. 

J~ |  i = 1 

Otherwise these two provide a start for our construction of a pair disjointly 

apart, conflicting with maximality. But (a) implies (T,/5) is v.w.b., as (T, P) is. �9 

The other half of our argument is to show that if L ~ 0 ,  then (T,/5) is not 

mixing. In a maximal arrangement, notice that {1,- �9 n} must break into subsets 

M, , .  �9 -, M, where (l, l') • L itI l and l' belong to ditierent Mk 's. These Mk's are 

our first approximation to the sets in a rotation factor for (T,/5). From here on 

many of our lemmas will be identical to those in [3]. When this is true, we will 

omit the proof and refer the reader to the proper lemma there. We now begin 
~tl m(l,t) I:1 the process of selecting a maximal arrangement with . , . ~  , . , , ( j , t)= 

V ~ o , o  ,-i T '(P).  

LEMMA 8. If  V~".,B, VC and V~'.,B, vC'~ are (e,A)-rigidly apart and 

S C{1 . . .  m}, then for all but k / A  of the atoms E C V,~s,B, v C, v C'~, 

V B~vC~/E and V B, vC'~ 
i E S  i E S  

are still ( e, X/ A ( m /card (SC)))-rigidly apart. 

PROOF. Same as Lemmas 4 and 6. �9 

Our next result lifts lemma 7 of [3] to this case. 

LEMMA 9. In a maximal arrangement, for any ( l , l ' ) ~ L  and e l > 0 ,  a >1  

there is a T, so that for any t > T, and ez > 0 there is a J, 8, m so that for j > J, and 

any (ot, 8, m)-subset S C{1, . . - ,m(j , t )} ,  

i) for all but e2 of the atoms 

E c  V B, tj, t )v  X) Cl0, t ) ,  
i E S  c I - 1  

and 
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m 

ii) for all but 2 ~/1/t of the atoms E, 

V B,( j , t )  vClO' , t ) /E and V B, ( l" , t )vCl ' ( j , t )  
i E S  I E S  

are (e2, el)-Close. 

ProoF. Statement i) follows from lemmas 2 and 4 of [3]. If ii) were false for 

some ex and a and infinitely many t, and some e2, infinitely many j we could not 

select 8 small enough or m large enough. Hence for such t and any 8, m, there 

are infinitely many j and (a, 8, m)-subsets Sj C{1, . - . ,  re(j, t)} so that for more 

than 2 ~ ] ~  of the atoms E, the pair in ii) are (e2 ,1-  e0-rigidly apart. Using 

Lemma 8 and part i, we can select 8's, j ' s  and E ' s  so that 

( o.~(s,, ) 
,v s B, tj, t)/E, ,-,V V' (P) 

is as small as we like, and for (l, T')E L, for at least 1 - X / l #  of the E, 

V B , O , t ) v C ~ / E  and V B , ( j , t ) v C ~ '  
i E S  i E S  

are (e(t) ,  X/1/t(1/(1 - ao)))-rigidly apart by Lemma 6. If ii) is false we can select 

E, and using modifications of V,EsB~(j , t ) /E and V,~sB, ( j , t ) ,  build two 

disjointly colored arrays with set of pairs/S, of maximal size, but the falseness of 

ii), by the construction in Corollary 3 conflicts with maximality. �9 

LEmMA 10. I f  we have a maximal  arrangement, then for any el there is a T so 

that for t > T and any e2, there is a 8 and a J, so that for j > J, and any partition Fk 

with more the 8 its mass in sets larger than 2 -~~ then 

i) for all but e2 of the F~, 

d~,o.,~ V B,(j,t)/Fk, V B,(], t  <e~ 
i - I  i - I  

and 

ii) for all but 2~/1/t  of the Fk, 

m ( h t )  

v B, (j, t) v CI(j, t)/F~ and 
i = l  

are (e2, el)-Close, for all (l, l ' )E  L. 

PROOF. Essentially identical to Lemma 9. 

We now lift lemma 8 of [3] to this context. 

' 1 0 , 0  

V B,O' , t )vCl 'O' , t  ) 
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LEMMA 11. I f  we have a maximal  arrangement, for any A > O, there is a T, so 

that for t > T and any e ' >  O, there is an M and J so that for m > M, ] > J, 

e 'm (j, t) >= m, for all but A of the values p = 1 , . . . ,  [m (j, t ) /m ], if (l, l') E L then 

(p§ l)m (p+l)m 

V B , ( j , t )  vC~( j , t )  and V B~(j , t )  v C l ' ( j , t )  
i - p ro  +1 i - p m + l  

are (e (t)  - 2e ', A )-rigidly apart. 

PROOf. Argue exactly as in lemma 8 of [3], using Lemma 9 instead of iemma 

7 of [3], and rigid apartness instead of rigid closeness. �9 

, ,  m ( l , t ) n  z �9 
LEMMA 12. There is a maximal  arrangement with v ~-a t~ LI, t) = 

V ,, ,(o+j , ' r i  , . ,  . ( P ) .  

PROOF. Argue as in lemma 9 of [3], using Lemma 11 in place of Lemma 8, 

and Lemma 10 to get the colorings to be monochrome. �9 

Call the above maximal arrangement,  a perfect arrangement. We need one 

more basic result, the analogue of iemma 10 of [3] that a perfect arrangement is, 

in some sense, unique. As we noted once before, what must happen in a perfect 

arrangement is that for each t, the n colorings must split into subsets MI," �9 ", M~ 

where (l, l ' ) ~  L iff l and l '  belong to different M~'s. 
~ l  M ( t ) + l  ~ k .  

Define the coloring v,_,  t~ ( M ( t )  + j, t) to be the coloring which gives each 

name in V'~(')§ -r, tt,~ ~.j . ~ . j ,  all the colorings it has from any term in Mk, each with 

equal probability. It is these which we show are essentially unique, i.e. any two 
M(O§ 

perfect arrangements differ only in how V ~.1 C ~ ( M ( t )  + j, t) is broken up into 

monochrome colorings. 

LEMMA 13. Suppose we have two perfect arrangements 

M(o+j T' v ( f )  v ~/ Cl(i, t), 
i ~ l  I - I  

L and e (t)  and 

M'O)+i 

V T' (P)  v ~/ C['(j , t) ,  
i - I  I - I  

L ' and e '(t ). For any e > O, there is a T so that for t > T, there is a J (t, e ) so that 

for j > J ( t , e ) ,  for each k there is a k '  so that for all but e of  the atoms 
E c v~., T' (P), 

' ) 
i~l i - - |  
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PROOF. Assume this false for some eo and infinitely many t, and for each such 

t, infinitely many j. For such, there must be a k so that for more than eo of the E, 

( ' ) ~/ C~(j, t)/E, V C:~'(], t ) lE > eo for all k'. 
i - 1  i - 1  

V,.I T ' (P)  with There must, then, be (l, l') E L ' and (l, l ') ~ L and sets FI, F2 C J 

p(Fl )  = p . ( F , ) -  -> eo/n" so that 

I i 

V T ' ( P ) v  Cf ' ( j , t ) /F ,= V T ' ( P ) v  Cr,(j,t)/F, 
|--1 i = l  

and 

/ I 

V T'  (P) v C',r(j, t)lF2 = V T' (P) v cr 'o ,  t)lF, 
i - - l  l ~ l  

for infinitely many j. But the right hand sides are (e2, el)-Close, e2--~ 0, et ~ 0, by 

Lemma 10, where the left hand sides are still (e'(t), ~/1-~)-rigidly apart by 

Lemma 6. This is a conflict. 

This, now, gives us our last setup. 

COROLLARY 14. For any e > O, 

so that for all to > To, 
so that for all jo > Jo, 
so that for all t > T, 

there is a To, 
there is a Jo, 

there is a T, 

there is a J, 

so that for a l l / >  J, for all but e of the p E 1 , . . . ,  [m (jl, tl)/m (]o, to)], for all k there 
is a k' so that 

(-o~, ~+,,,,u~,,o) T, ) 
Jm o~.,o) ~  vC~(jo, to), V (P) v C'~'(j, t) < e .  

i - pm O~,to)+ 1 

PROOF. Applying Lemma 11, our choices can be made so that for all but e of 
w ~'§176 "r, (p) v C~'(j, t) comes from a lumping of an M~' from a the values p, - mU~,or, l - 

perfect arrangement. Lemma 13 now implies the result. �9 

Now define partitions {Hi(j, t) ,--  -, H,(j, t)} where ~o E H~(s, t) if[ the T,/5. 
M ( t ) * l  - ~ . t nameofoJ  i s a n a m e i n  V~.~ C~(], ) .Theorem 1 says that if s = 1,then (T,/5)is 

Bernoulli. We now get the other half of our result. �9 

THEOREM 2. I f  S > 1, then (T,/5) is not mixing. 

PROOF. By Corollary 13, for any e there is a To so that for to > To, there is a 

Jo so that for jo > Jo, there are arbitrarily large values k with 
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f < or 

T ~ (H~ (/o, to)) n H~, (1o, to) 
L > l - e  for a n y k ,  k '_-s .  

Thus (T,/5) is not mixing. �9 

COROLLARY 15. If  (T, P) is not Bernoulli, then it has a rotation factor. 

PROOF. Follows now from Lemma 1. �9 

This completes our result. There are a number of directions in which to pursue 

this kind of technique. We can try to extend to as general a group extension as 

possible. The new difficulty that arises is that the skewing function g may not be 

finite valued. B. Weiss has already shown how to handle a similar situation in [5]. 

Ornstein has introduced the notion of two factors sitting the same in a Bernoulli 

shift [1]. We now can build many different factors with finite fibers in a Bernoulli 

shift. Do they all sit the same? How many factors with k-point fibers are there? 

The answer is, there are only finitely many. This argument will appear 

separately. A third area with real promise is to "relativize" these arguments, to 

finite extensions of a direct product of a Bernoulli shift and some other 

transformation, and show, through the relativized isomorphism theory [4], that 

either this other transformation still has a Bernoulli complement,  or the 

extension can be made measurable with respect to it. This program almost 

certainly will work. 
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